

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# **Notes on DDCP and OEI**

Ryan A. Rivera
Scientific Computing Division
Frameworks, DAQ, and Electronics department
16 April, 2020

#### **Overview**

- Compare DDCP and OEI (otsdaq Ethernet Interface)
  - Identify potential conflicts and open questions.
- Propose design approach to Ethernet piece of the uTCA FPGA digitizer demo.
- Propose an approach to resolving IP addresses or setting IP addresses in the field.
  - Favor protocol-based solutions.
    - Avoid DIP switch or other hardware-based solution that may preclude use of other commercial boards.



## Notes on DDCP vs OEI (1 of 2)

- In DDCP, "Server" is the hardware, "Client" is requesting software
- Max size in DDCP is 9000 bytes. OEI follows the 1500 byte Ethernet MTU standard, which leaves 1472 bytes for UDP payload.
  - The OEI protocol allows for up to 182 quadwords (quadwords = 8-bytes).
- DDCP is expecting hardware to send from port 65000.
  - OEI sends from port 2001.
- All DDCP messages use special protocol header (6\*16 + 1\*32 + 3\*64 ⇒ 20 bytes). Has extra notion of "slot" and "feature" .. "index" is like address.
  - OEI protocol is 10 byte header.



## Notes on DDCP vs OEI (2 of 2)

- DDCP Expects a tunable delay on the FPGA transmit side between packets to throttle.
  - Currently not in OEI
- DDCP allows unsolicitied requests from hardware (i.e. bidirectional reads), not how OEI works right now.
- DDCP does not currently define how to set IP address of hardware or destination addresses.
- DDCP does not currently define if hardware must be pingable, or how ARP handling should work.



### **Approach from OEI to DDCP**

- otsdaq provides full rate UDP firmware solution (essentially DDCP) based on generic RTL:
  - In use since 2010 at test beam.
  - Documented on Redmine:
    - https://cdcvs.fnal.gov/redmine/projects/otsdag/wiki/OtS\_Ethernet\_Interface
  - Also, the full otsdaq project is found here, led by SCD/FDE: <u>otsdaq.fnal.gov</u>
- Two primary blocks:
  - Ethernet controller
  - OEI protocol wrapper
    - This block will likely need to be replaced with the new "DDCP protocol wrapper"



#### **Features of Ethernet Controller**

- Repo location:
  - https://cdcvs.fnal.gov/redmine/projects/otsdaq/repository/firmware/revisions/develop/entry/cactus/components/ots\_eth ernet/firmware/dev/ActiveHDL\_proj/ethernet\_controller/compile/ethernet\_controller.vhd
- Implemented in pure vhdl/Verilog with no memory or vendor IP elements.
- Inputs: full self MAC, IP, and PORT
- Handles ARP replies and broadcasts
- Will reply to any ARP
  - fail-safe useful in determining current MAC/IP of hardware
- Handles ICMP ping replies
- Ignores anything that is not ARP, addressed UDP, or addressed ICMP.
- Single-byte special packet handling:
  - Change IP (disabled now due to risk, but could enable),.. Functionality moved to OEI protocol wrapper so the packet formation was more complex
  - 0  $\rightarrow$  get version
  - 1 → special strobe 1 synced with client address capture
  - 2 → special strobe 2 synced with client address capture
  - 3-FF → no-op (to keep software OS sockets alive)



### **Features of OEI Protocol Wrapper**

- After reset, low 8-bits of address default to user specified value (i.e. can be hardcoded in firmware project or come from pins).
  - OEI Port is always hardcoded to 2001.
- OEI segments 64-bit address space into "internal" and "external" user space
  - For example, OEI full MAC and IP can be changed by writing to the internal address space: <a href="https://otsdaq.fnal.gov/docs/oei\_address\_space.html">https://otsdaq.fnal.gov/docs/oei\_address\_space.html</a>
- OEI has two transmit channels, "burst" (FPGA pushes data to software without requests) and "control" (software pulls data from FPGA).
  - With separate destination addresses
  - "Control" also has reply-to-sender operation



#### **Proposed Approach**

- Throw out OEI protocol wrapper, keep Ethernet controller
- Create new DDCP wrapper
  - DDCP wrapper implements the 20-byte header handling
  - Map DDCP "\_feature" to essentially the "internal address space" OEI concept, for example, to change FPGA MAC address and IP address,.
  - Map DDCP "\_index" to OEI "external address space" address



### **Open Questions**

- What kind of activity is on the IPMI/backplane network?
  - Is it quiet? If so, consider single-byte IP.
  - Other special expected behavior on this network?
- Do we want FPGA responses to always go to one place (as defined by request source)? Or will data potentially go to a different sink than requester?
- Do we want FPGA to generate unsolicited requests? If so, which client is targeted?
- Should there be an protocol operation to indicate index increments for count versus does NOT increment for count?
  - For example, reading from target FIFO.
    - Have found this useful in OEI user space.



# **Backup**



# SCD/FDE Applicable Project Experience (4 of 8)

- Designed and supported FPGA card by SCD/FDE
- CAPTAN+ ("CAPTAN plus") is the next generation CAPTAN card.
  - A leap from Xilinx 4 series to 7 series.
  - The 'X' stands for "eXtreme" for its support of 10G links.

#### Features:

- Gigabit Ethernet
- 4 FMC connectors, 16 Links
  - 2 HPC, 2 LPC
  - High-speed Links per FMC:
    - SE=10, NW=4, NE=1, SW=1.
- 400 GPIO
- 12V Input Power Block





# SCD/FDE Applicable Project Experience (5 of 8)

 Completed a test beam project at Fermilab in 2016

 Real-time event assembly conducted in µTCA form factor.





12